
Learn More
Web / sales.cwcembedded.com
Email / sales@cwcembedded.com

cwcembedded.com

D
at

a
Sh

ee
t

Cont inuum IPC
Inter-processor Communicat ions
L ibrar y

Continuum IPC Overview

Real-time sensor based systems require status, control
and bulk data movement to coexist within the same
communication architecture. The Inter-processor
Communication (Continuum IPC) Library provides all the
capabilities needed to control applications running on
multiple processors having data movement requirements.
The software hides the hardware architectural details from
the application designer. For example, message passing
functions send messages using the same application
interface and parameters, whether the destination task
resides on the same processor, same board, or any other
board within the fabric. The hardware abstraction provided
by Continuum IPC ensures that applications written for
current generation processors and fabrics will be easily
portable to the next generation. Depending on the board
and fabric architecture, IPC uses Serial RapidIO® (sRIO),
StarFabric, PCI Express® (PCIe) or PCI/X as on-board and/
or inter-board interconnects.

The library determines the location and end-point
addressing for source and destination as applications open
endpoints for input (receiving messages) or output (sending
messages). With routing information stored within each
processor, the software does not impose a single point of
failure as would result from a centralized table of buffer or
destination mapping information.

Features

�� High-performance, low latency message passing library

�� POSIX-style application interface

�� Message passing features priorities, time-outs, and
copyless transfers

�� Bulk data transfer from any processor’s memory to any
other processor’s memory

�� Memoryless signaling from any processor to any other
processor

�� Global buffer and global semaphore API

�� Segmented block transfer capability supports memory
striding, matrix manipulation and submatrix selection

�� Support for multi-core processors

�� Supported under VxWorks on CHAMP multi-processor
boards, FPGA boards, and single board computers

Benefits

�� High performance, low latency and easy-to-use
messaging and data transfer capabilities

�� Task-based communications between processor cores,
processors on-board, or processors within a fabric

�� Platform and fabric independence allow easy migration
to emerging interconnect standards while architectural
details are hidden

�� Distributed design with no single points of failure

�� Supports dynamic entry of nodes for high availability
applications

�� Dynamic name space management allows message
endpoints and data buffers to be identified by
application-determined names at run-time

http://www.cwcembedded.com/sales.htm
http://cwcembedded.com/

Curtiss-Wright Controls Embedded Computing / cwcembedded.com

Continuum IPC Capabilities

The Continuum IPC Library provides the following
capabilities:

�� Message passing, from task to task

�� Data transfer from any processor’s memory space to any
other processor’s memory space

�� Signals (implemented using sRIO doorbells or hardware
interrupts) from any processor to any processor

�� Dynamic name space management; message endpoints
and data buffers are identified by application-determined
names at run time

Message passing is provided through POSIX-style open,
close, read and write functions, and also through an
extended interface that provides control over more features
than the POSIX interface. Message passing is priority-
based, queue-driven, flow-controlled, and reliable in nature.

The bulk data transfer capabilities move large blocks of
data from one processor memory space to another. An
application creates a receive buffer, and announces it to the
network by providing the buffer name, address, and size.
Other processors open the buffer, using the same name, for
output operations. Write operations cause DMA transfers
from the source processor’s buffer to the destination buffer.
Because writers do not need to know the physical address
of the buffer (only the name need be known), system
architects are free to move the buffer anywhere within the
system to meet performance requirements, without changing
source code in the writing tasks.

A block striding feature assists with corner turning and
facilitates scatter/gather operations. Writers specify a
destination offset within the target buffer, allowing multiple
processors to write to different areas of a shared buffer.

Data transfer operations are asynchronous, completing
after the function returns. The data transfer functions
support callbacks, allowing the application to know
when the transfer completes. Data transfers are optionally
accompanied by signals. Signals, associated with receive
buffers, allow a writing task to assert a notification to a
receiving processor after a DMA completes. This mechanism
can be used to signal a “data ready” condition to the
receiving application.

The library provides the same capabilities, using the same
interface, whether the source and destination are the same
processor, same board, or anywhere within the fabric. All
functions are designed to support high throughput and low
latency needed by real-time systems.

Message Passing

The Continuum IPC Library provides two forms of
applications interface for message passing functions.
Message passing is based on the standard I/O open, close,
read, write, and ioctl functions, shown in Table 1. Special
features are controlled through ioctl functions. Messages
are data structures sent from one task to another. Sending
and receiving tasks may reside anywhere within the system.
Message passing functions move messages from sender to
receiver, using the appropriate hardware paths connecting
sender and receiver.

Table 1: POSIX Compliant Message Passing Functions
Function Description

open Open an endpoint

close Close an endpoint

read Read (receive) a message

write Write (send) a message

ioctl I/O control for messages

Figure 1: IPC Software Model

Sending Task

Receiving Task

IPC Library

2

http://cwcembedded.com/

Curtiss-Wright Controls Embedded Computing / cwcembedded.com

The Continuum IPC Library also supports a more
sophisticated form of message passing (Advanced Message
Passing), as seen in Table 2. For example, the message
send function has two additional parameters: priority and
time-out. This allows an application to specify the time-out
behavior and priority with each send operation, rather than
through changing defaults using ioctl.

Table 2: Advanced Message Passing Functions

Function Description

msgOpen Open an endpoint

msgClose Close an endpoint

msgReceive Receive a message

msgReceiveBuf Receive a message (copyless form)

msgSend Send a message

msgIoctl I/O control for messages

Other functions in the library offer significant performance
improvements. For example, it may not be necessary to
copy input data from a message buffer into an application’s
data area (read performs such a copyless operation).
Instead, an alternate read function provides the address of
input data within a message buffer, eliminating the need for
a copy.

Bulk Data Transfers

Portions of an application may not require the queuing and
priority control provided by the message passing functions.
When data volume is high and data is time-perishable, the
use of a reliable protocol can increase latency and consume
additional CPU time. The introduction of data queues,
copying and other mechanisms consumes processor cycles
while the queued data ages and data continues to stream in
from the input sensor. In this case, it may be advantageous
to use a lower overhead transfer mechanism.

The Bulk Data Transfer (BDT) functions are designed for high
volume, low-latency data, such as that which occurs in data
flow architectures. The BDT functions provide a different
class of service than the message passing functions. Within
the BDT functions, a processor creates and owns a buffer.
The owner is the receiver; other processors open the buffer
(using the same name) and write data to the buffer. The BDT
functions allow:

�� the owner to “advertise” its buffer, by name, to other
processors

�� senders to open the same buffer for output, by name

�� senders to DMA data from their local memory space to
any place within the destination buffer

�� the sender to optionally signal itself upon completion of a
DMA operation

�� the sender to optionally signal the receiver that data has
been sent

The senders may reside anywhere within the system,
including on the same processor that owns the buffer. As
with message passing, the application is isolated from the
actual data movement mechanism.

The BDT functions are shown in Table 3.

Table 3: Bulk Data Transfer Functions
Function Description

msgBlkCreate Create a buffer

msgBlkOpen Open a buffer

msgBlkClose Close a buffer

msgBlkWrite Write data to a remote buffer

msgBlkWriteSeg Write data segments to a remote buffer

3

http://cwcembedded.com/

Curtiss-Wright Controls Embedded Computing / cwcembedded.com
4

Segmented Block Transfers

It is sometimes necessary to transfer multiple blocks of
data, each separated by some fixed number of bytes (a
source stride), to a destination buffer, where each block is
separated by a different destination stride. For example, an
application may need to transfer a submatrix into a larger
matrix, or extract a submatrix from a larger matrix.

In RADAR and SONAR applications, matrices of data
require transposition between various computation stages. If
data is to be moved from one processor to another between
computational stages, the transpose performance can be
improved by partitioning the matrix and transposing the
partitions during the data movement.

The segmented block transfer operation can improve
performance through matrix partitioning. A large matrix
can be divided into several submatrices. The submatrices
can then be moved to a target matrix, transposing the
partitions (but not the elements within the partitions) using
msgBlkWriteSeg. The resulting individual partitions can
then be transposed using a matrix transpose function. Since
these submatrices are smaller than the overall matrix, they
lend themselves to improved cache utilization, improving
performance.

Signaling

Due to the nature of DMA operations, a processor is not
aware that other processors have transferred data into a
buffer. The advantage of DMA operations is that the data
movement takes place independently of and concurrently
with CPU activity. It is therefore necessary to provide some
means for a writing process to gain the attention of the
processor that owns the buffer. This could be accomplished
using a Continuum IPC message. However, signals are
more efficient.

The number of signals available on any given processor
is board-specific. For example, IPC uses RapidIO doorbell
messages, with a 16-bit software-defined information
field, for inter-processor signaling. Signals may also be
implemented as hardware interrupts on VME systems or
when signaling between CPU cores. Table 4 shows the
signaling functions available in the Continuum IPC Library.

Table 4: Signaling Functions

Function Description

msgBlkSigEnable Enable (unmask) a signal

msgBlkSigDisable Disable (mask) a signal

msgBlkSigConnect Connect signal handler function

msgBlkSignal Generate a signal

msgBlkIoctl I/O control for Blk transfers

(1) Sender calls msgBlkWrite
(2) Having started DMA transfer, control

returns to calling program
(3) msgBlkWrite transfers length bytes

from sendBuffer into RxBuffer starting
at offset

(4) At end of transfer, msgBlkWrite
interrupts owning processor

(5) msgBlkWrite calls callback function

Figure 2: Example of a Bulk Data Transfer

Sender Receiver

(1)

(2)

(5)

(3)

(4)

SendBuffer RxBuffer offset

length

msgBlkWrite(...)

callback(...)

http://cwcembedded.com/

Curtiss-Wright Controls Embedded Computing / cwcembedded.com
5

Global Buffers

The Global Buffers and Global Semaphores provide an
additional set of APIs enabling multiple CPUs to share
memory and communicate more efficiently. This additional
API also includes a set of functions to initialize remote
memory for future transparent access.

Identical to the Message Passing and the Bulk Data Transfer
APIs, Global Buffers are declared and published using
application-defined names at run-time. Buffers are opened
and mapped, and appear as the calling node’s local
memory, regardless of the physical location of the buffer
within the multicomputer.

Table 5: Global Buffer Functions

Function Description

gbm_buf_create Create a buffer

gbm_buf_open Open a buffer

gbm_buf_close Close a buffer

gbm_buf_map Map a buffer

Once a buffer is mapped, data transfers can occur as
simple programmed I/O operations or by utilizing the more
efficient DMA method. The Global Buffer API provides an
additional set of APIs specifically designed to enable an
application to configure and manage DMA chains. DMA
chains contain DMA descriptors that describe where data is
moved to and from as well as the size of the DMA. Without
application intervention, DMA operations described in the
DMA chain are activated and enabled sequentially until
completion.

Table 6: DMA Chain Functions

Function Description

gbm_dma_open Create a DMA chain

gbm_dma_close Close a DMA chain

gbm_dma_desc Create a new DMA descriptor and add to DMA
chain

gbm_dma_start Start a DMA transfer

Global Semaphores

Global semaphores provide the capability to any processor
or task to create/attach/give/take a semaphore created
anywhere within the system. Semaphores are created by
an application assigned name. Tasks attempting to attach

to a global semaphore reference the semaphore by its
name. The flexibility of the API allows the application
programmer to attempt to attach to a semaphore before it
is created, and be resolved once the creation has occurred.
Additionally, an application may initialize the semaphore
to a taken or available state, and specify a maximum count
that defines the maximum number of tasks/processes that
are queued. Tasks/processes are de-queued in the order in
which they are queued, following a first-in-first-out method.

Table 7: Global Semaphore Functions

Function Description

gbm_sem_attach Finds an existing semaphore by name

gbm_sem_close Detaches a semaphore

gbm_sem_create Create a semaphore

gbm_sem_give Give access to a pending task on a semaphore,
or increment count

gbm_sem_take Request access to a semaphore

Ordering Information

The development license permits software development
for one project with unlimited users, and includes run-time
licenses for 20 nodes. Continuum IPC is distributed on
CDROM for development under VxWorks® with Windows-
based workstations. Continuum IPC is currently supported
for use on all CHAMP-AV multi-processor boards, 6U
FPGA processor cards and select single board computers
and memory cards. Please contact a Curtiss-Wright sales
representative for current hardware and operating system
version support.

For single card applications order DSW-DEV-IPC-000-CD.
For multi-board systems using StarFabric interconnect, the
StarLink VxWorks driver is also required, part number
DSW-DEV-230-000-CD. For sRIO-based systems such as the
CHAMP-AV6 and VPX6-185, order DSW-IPC/VPX-000-CD.

An additional run-time royalty is required for each node
in excess of the base license running the Continuum IPC
software. Pricing is cumulative over the life of a single
project. Order part number: DSW-RTL-IPC-000.

http://cwcembedded.com/

Curtiss-Wright Controls Embedded Computing / cwcembedded.com

©
 C

op
yr

ig
ht

 2
00

7,
 C

ur
tis

s-W
rig

ht
 C

on
tro

ls
A

ll
Ri

gh
ts

Re
se

rv
ed

. M
KT

-D
S-

C
on

tin
uu

m
 IP

C
 L

ib
ra

ry
-1

22
11

0v
4

6

Warranty

This product has a one year warranty.

Contact Information

To find your appropriate sales representative:

Website: www.cwcembedded.com/sales

Email: sales@cwcembedded.com

Technical Support

For technical support:

Website: www.cwcembedded.com/support1

Email: support1@cwcembedded.com

The information in this document is subject to change
without notice and should not be construed as a
commitment by Curtiss-Wright Controls Embedded
Computing. While reasonable precautions have been
taken, Curtiss-Wright assumes no responsibility for any
errors that may appear in this document. All products
shown or mentioned are trademarks or registered
trademarks of their respective owners.

http://cwcembedded.com/

