

3CPF1 3U PowerPC/Xilinx Virtex-II Pro Processing Engine

Applications

The 3CPF1 is designed to solve the most demanding scalable processing requirements in embedded systems, in particular for applications such as:

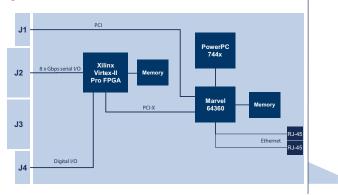
- RADAR
- SONAR
- Electronic warfare / Signal intelligence / Surveillance
- Real-time imaging / EO
- Medical imaging

Features

- 744x PowerPC processor
- Xilinx Virtex-II Pro XC2VP70 FPGA
- 8x Serial I/O links operating up to 3.125Gbps
- High-Speed Ermet ZD connectors for communications channels
- Dual Ethernet to front panel or backplane; RS232 (EIA-232) and RS422 (EIA-422) to backplane
- Independent PowerPC processor and FPGA nodes
- Ruggedized versions available (Air or Conduction cooled)
- VxWorks and Linux support

Benefits

- Tightly coupled FPGA and PowerPC processing nodes
- FPGA connects directly to independent memory banks for maximum flexibility and efficiency in demanding DSP applications


Overview

The 3CPF1 is a modular signal and data processing engine harnessing the combined power of the latest generation of PowerPC CPU, large Xilinx FPGA and highbandwidth multi-channel serial communications fabric. This creates a balanced and scalable compute platform.

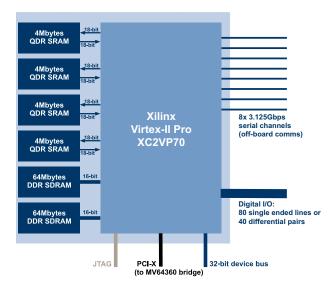
A complete rugged and systems based product philosophy means that the 3CPF1 can be used as a common building block to a range of systems and results in accelerated development cycles and faster time-to-market.

3CPF1 Overview

Figure 1: Architectural Overview

Architecturally, the 3CPF1 consists of two processor nodes; one node is based on the PowerPC 744x CPU and the other node is based on a Xilinx Virtex-II Pro FPGA. Both processor nodes have a fully distributed memory structure with multiple communications channels. The

Innovation In Motion. cwcembedded.com


Learn More Web / sales.cwcembedded.com Email / sales@curtisswright.com

communications fabric connects local processor elements and boards together for a scalable solution.

FPGA Processor Node

Figure 2: FPGA Processing Node

Xilinx Virtex-II Pro FPGA

The 3CPF1's FPGA node is based around a Xilinx Virtex-II Pro XC2VP70 device as standard, though other devices may be fitted: contact Curtiss-Wright for details. Each node features:

- Eight 3.125Gbps SERDES transceiver pairs
- 64-bit/125MHz parallel bus to PowerPC bridge
- Four banks of 2M x 18-bit (4Mbytes) QDR SRAMs
- Two banks of 64/128Mbytes DDR SDRAM

Gigabit Communication Channels

The Virtex-II Pro FPGA features serial communications, via RocketIO[™] transceivers, able to operate up to 3.125Gbps. Each RocketIO channel has separate 8/10B encoded LVDS pairs for receive and transmit signals. Groups of RocketIOs from a single device can be 'bonded' together to synthesize fewer, but higher bandwidth data links.

The 3CPF1's high-speed serial communications are electrically compatible with standards such as PCI Express, Serial RapidIO and other switch packet interfaces. The 3CPF1 does not require a protocol to use the card as the FPGA, which drives the high-speed serial interfaces, can also use 'raw' data streams. The use of a communications protocol requires a suitable IP core.

PowerPC Communications

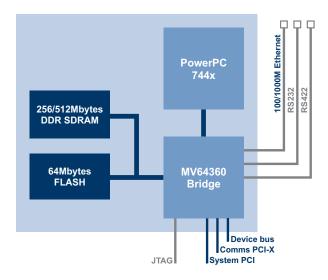
In addition to multi-Gigabit per second serial communications, the FPGA has a fast data-link implemented to the PowerPC node's PCI bridge. This provides a 64-bit/125MHz point-to-point link to the system PCI and the PowerPC 744x's memory.

External FPGA memory - QDR SRAM

The FPGA node includes four banks of 2Mx 18-bit QDR SRAM. QDR memory has the ability to perform read and write operations simultaneously. There are separate read and write busses which clock data on both the rising and falling edge of the clock signal. The QDR memory is clocked at 125MHz, so a bandwidth of 500Mbytes/s, simultaneously for both reads and writes, per device, is available. This provides an aggregate bandwidth of 4Gbytes/s for all four devices. As the QDR SRAM devices are directly controlled by the FPGA, each QDR memory bank can be independently or co-operatively used in various ways such as a FIFO, linear addressable memory pool, bit-reversed addressing or circular buffer as best suits the application.

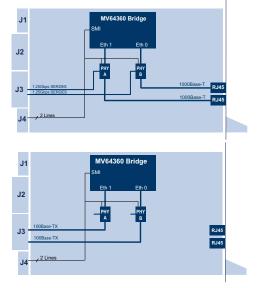
External FPGA memory - DDR SDRAM

Bulk data storage for the FPGA node is provided via direct FPGA connections to two separate 16-bit wide, 64/128Mbytes DDR SDRAM banks. These memory banks can be used independently or together as a 32-bit wide single bank to store large data-sets such as image frames for medical imaging or temporal processing.


FPGA Configuration

The 3CPF1 FPGA node's configuration is controlled by the PowerPC processor, with the FPGA configuration file being stored in the FLASH. Curtiss-Wright supplies tools for programming the FPGA in both development and run-time environments. The board's JTAG connectivity can also be used for FPGA configuration.

PowerPC Processor Nodes


Figure 3: PowerPC Processor Node

The 3CPF1 provides a PowerPC sub-system including a PowerPC 744x with 256/512Mbytes of DDR SDRAM with ECC, coupled via a MV64360 bridge, plus 64Mbytes of FLASH memory. The PowerPC node operates the MPX bus protocol, running at 125MHz with a 64bit data path to give a peak bandwidth of 1GBytes/s. The MV64360 also provides two Gigabit Ethernet channels, RS422/232 ports as well as two PCI/PCI-X interfaces.

Ethernet

Figure 4: 3CPF1 Ethernet options: Gigabit Ethernet to the front panel (top) or Fast Ethernet to the Backplane (bottom)

There are two off-board Ethernet interfaces each providing 10/100/1000Mbit (auto-negotiatiating interface) channels. Both MACs are connected to PHY devices and are available either at the front panel as an RJ45 connection, or at the J3 connector as SERDES.

RS422 (EIA-422) & RS232 (EIA-232) Interfaces

One RS422 interface with RTS/CTS handshaking and one RS232 port is provided by the PowerPC node. The ports are made available to the user through the backplane J4 connector. Both ports are available for user applications and either can be used for a serial console, as required by an operating system bootloader, for boot configuration.

Watchdog Timer

This can be used to cause the board to reset and/or activate an interrupt if the watchdog isn't serviced (reset) by the processor within a pre-defined period of time. This is useful in preventing board 'lock up' in the event of an application failure.

Temperature and Power Monitors

Accessible via the PowerPC processor, the 3CPF1 includes a temperature sensor (controlled via an I₂C bus) to monitor the temperature of the board and the FPGA. The temperature sensor also has an ADC capability that is used to monitor the local supply voltages.

JTAG Interface

The 3CPF1 features multiple, independent JTAG chains via a Firecron JTS01/JTS06 controllers that are accessible via a header near the front panel. The header provides the developer with access to the COP (PowerPC) and ChipScope (FPGA) ports. The separate JTAG chains permit the board to undergo dynamic diagnostics during normal application run-time. A boundary scan debug module is available to allow users to 'break out' these signals to standard debugger connectors.

Input/Output

The 3CPF1 includes a range of high-speed data I/O ports: PCI, multi-channel Gbps serial links, parallel FPGA and Gigabit Ethernet. System I/O such as RS232/422 and JTAG is also supported.

FPGA Parallel I/O

The FPGA has 80 I/O lines directly connected to the J2/ J3 connectors. They are routed as 40 differential pairs. As a build option, 2 of the FPGA I/Os (i.e. one pair) may be routed to an FPGA Global clock input which is terminated externally.

Backplane I/O

The majority of input/output for the 3CPF1 is available via the backplane: all the system I/O (such as Ethernet, RS232 and high-speed serial) is routed to the J3 and J4 connectors.

The 3CPF1 has eight, off-board, multi-Gbps transceivers, each of which can be used to establish a point-to-point data link. These links can be wired to create a wide range of topologies to best suite the application such as pipelines of arrays to smoothly scale the system. If more than eight data links are needed, then active switches can be used. These can be implemented within a custom backplane and/ or switch card. To supply the bandwidth required by multi-Gigabit data links and Gigabit/fast Ethernet, the J3/J4 connectors of the 3CPF1 are Ermet ZD type connectors with balanced differential signal routing and ground planes. Use of this connector type requires an appropriate customized backplane.

The 3CPF1 employs a high-speed data link (64-bit, 125MHz PCI-X mode) between each PowerPC CPU and one of the FPGAs. The bandwidth afforded by this link (1Gbyte/s) allows the FPGA to be used as a co-processor: data is transferred to the FPGA where one or more IP cores perform compute intensive functions such as FFTs, correlations or imaging warping before the resulting data is returned.

Software and Firmware Support

The 3CPF1 lends itself to different applications and markets. These demands require that the 3CPF1 is available with different layers of software support. For system critical applications, Built-In Test (BIT) provides a power up and runtime system diagnostic. To make application development easier I/O board drivers and optimized libraries are available. The operating systems supported on the 3CPF1 are VxWorks and Linux.

TransComm™

TransComm is a communications toolbox for use with the 3CPF1 and future generation PowerPC and FPGA based products. It is supplied as a set of software and firmware components plus utilities. The package includes a communications harness to facilitate connecting together PowerPC to PowerPC, FPGA to FPGA and FPGA to PowerPC communications for high-performance, low latency data transfer anywhere around the TransComm network even across bridges. TransComm also allows developers to integrate their own IP within the fabric through the use of simple but well defined interfaces.

This functionality simplifies the process of building and scaling systems by allowing developers to focus on their code development and not worry about the infrastructure. The TransComm toolkit is optional.

Power-On Self Test (POST)

The 3CPF1 architecture includes one PowerPC CPU node with a host bridge incorporating the system memory and FLASH memory controllers, Ethernet controller and bus interfaces. The correct operation of this hardware is critical to the functioning of an operating system (OS) on the board, so the 3CPF1 performs certain POST functions to check that this hardware is in a sound state to facilitate booting an operating system. Checks include:

- Memory Checks that the expected amount of memory is available and that all control/address/data lines between the memory controller and memory are intact.
- Interrupts Confirms that the interrupt connection between the host bridge and the CPU functions correctly.
- Ethernet Checks the connectivity between the Ethernet Media Access Controller (MAC) in the host bridge device, and the Ethernet Physical Layer Device (PHY).

POST tests run automatically at power on and output reports to the console serial port. Upon passing all the tests, the operating system will be booted. In the unlikely event that one or more tests fail, the system will halt. This behavior may be overridden to force operating system boot regardless of test status.

Built In Test (BIT)

Comprehensive testing of the remainder of the system can be carried out using run-time Built-In-Test (BIT) functions, which run in the OS environment of the board. The Curtiss-Wright Built-In-Test system consists of two components: an API and a test specification language. The API allows a BIT script to be run on the hardware. The test specification language provides a precise description of one or more BIT tests for the script.

The specification language contains a series of BIT blocks (see table on opposite page). Each block may be run either sequentially or in parallel. In a sequential block, each BIT test is run in the order listed. In contrast, all tests in a parallel block are started at the same time and rely on the operating system thread scheduler to allocate time on the processor.

BSP Software

To support development, Curtiss-Wright supplies a comprehensive system of BSP software. The major components include user libraries, kernel libraries and utilities.

User Libraries

The Uses Libraries are designed to support general hardware access and high speed DMA transfers. These C++ libraries are source compatible across all supported operating systems. The services provided by the API fall into

these broad categories:

- Accessing Remote Nodes
- Allocating DMA Buffers
- Board Initialization
- Bridge Chip SRAM
- Built In Test
- Configuring the FPGA
- DMA Driven I/O
- FLASH Memory
- FRAM Memory
- Hardware Semaphores
- Interrupt Handling
- Persistent Environment Variables
- User Reserved Memory
- Voltage and Temperature Sensors
- Watchdog Timer

Kernel Libraries

The kernel level library includes low level routines required by the VxWorks/Linux kernel in order to run on the 3CPF1 plus a suite of device drivers which enable the kernel and user applications to exploit all available board hardware. The driver suite is divided into two parts: standard (WindRiver/Linux and Marvell) device drivers and Curtiss-Wright 3CPF1 specific drivers. The low level access to operating system functionality means these library functions are not portable between supported operating systems.

Most Curtiss-Wright library routines return an error code. Macros are provided to manipulate these error codes, aiding in application debugging.

Utilities

Board Viewer Tool:

Provides snapshot access to all of the registers (including user defined FPGA registers) and most of the memory on a Curtiss-Wright card. BView is a client/server program, with a graphical user interface (GUI) running on a Windows 2000/XP PC and a monitor daemon running on the 3CPF1 card.

Xilinx Configuration Utility:

Configures the FPGA either from a host file or from data already stored in the node's FLASH memory.

Card Environment Access Utility:

Provides access to the system and user environment variables stored in a node's FLASH memory. System environment variables describe a card's build properties (e.g. clock speeds, amount of memory fitted, etc.), while user environment variables can be used for any application purpose.

FLASH Viewing and Programming Utility:

Allows the user to reserve regions of FLASH to be programmed with application data, including bootable kernels, FPGA configuration data and BIT scripts.

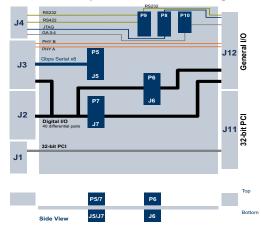

The BSP includes a number of example programs showing how to use the APIs for numerous essential tasks such as setting up DMAs, handling interrupts, running BIT, setting up a watchdog, etc.

Figure 5: 3CPF1 Adapter Module

Figure 6: 3CPF1 Adapter Module Block Diagram

Table 1: Built In Test (BIT) Functionality

Test Description DDR Byte Write Confirms that byte writes to the DDR memory attached to the FPGA are functional DDR Affersh Confirms that byte writes to the DDR memory attached to the FPGA is being properly refreshed DDR/DDR DRA Generator./ Confirms that the DDR memory attached to the FPGA memory interface correctly generate & check their defined test data DDR/DDR DMA Confirms that the FPGA can reliably transfer test data to and from an attached memory device DDR/DDR DMA Confirms that the expected amount of memory is connected to the FPGA and available for use Error Reporter Generates errors to validate the error reporting system Flash Confirms that a defined region of FRAM memory is writable and readable JTAG Controller Confirms that a defined region of FRAM memory is writable and readable Marvell Integrity Monitor Honks all the Marvell integrity interrupts (e.g., bus parity errors) and redirects them into the BIT test report Network Load Confirms that a defined region of FRAM memory is writable and readable Ortica Strip Server Starts a server on a specified interface, wait (writh timeoult) for a client connection and sinks any data received PCI Sub Master Abort Confirms that the data checkers and generators in the FPGA's PCL'X Interface correctly generate and check their defined testd data patterms PCI X DMA ch	Idble 1: Built In lest (B				
DDR Refresh Confirms that the DDR memory attached to the FPGA is being properly refreshed DDR/DDR DDG Generator/ Confirms that the DDR include Generators in the FPGA memory interface correctly generate & check their defined test data to patterns DDR/ODR DMA Confirms that the FPGA can reliably transfer test data to and from an attached memory device DDR/ODR Size Confirms individual memory devices may be accessed without interfering with each other DDR/ODR Size Confirms that the expected amount of memory is connected to the FPGA and available for use Error Reporter Generates errors to validable the error reporting system Flash Confirms that the flash can be read FRAM Confirms that the flash can be read Marvell Integrity Monitor Hooks all the Marvell integrity interrupts (e.g., bus parity errors) and redirects them into the BIT test report Network Load Connerst a client to a specified thered, with integrity interrupts (e.g., bus parity errors) and redirects of ginen asize Network Load Connerst that the bridge chip receives a master abort for invalid PCI cycles PCI > DMA checker Confirms that the data checkers and generators in the FPGA & PowerPC SDRAM over the PCI × bus PCI > DMA checker Confirms that the data checkers and generators in the FPGA & PowerPC SDRAM over the PCI × bus PCI > DMA checker C		Description			
DDR/DDR Data Generator/ Checker Confirms that the data checkers and generators in the FPGA memory interface correctly generate & check their defined test data patterns DDR/DDR Independence Confirms that the FPGA can reliably transfer test data to and from an attached memory device DDR/DDR Size Confirms that the expected amount of memory is connected to the FPGA and available for use Error Reporter Generates errors to validate the error reporting system Flash Confirms that the data can be read FRAM Confirms that a defined region of FRAM memory is writable and readable JTAG Controller Confirms that the contoller is accessible from the host Marvell Integrity Monitor Hooks all the Marvell Integrity interrupts (e.g. bus parity errors) and redirects them into the BIT test report Network Load Connects a client to a specified server, and sends a specified count of packets of given size Network Load Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus PCI-X DMA checker Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus PCI-X DMA hout/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus PCI-X DMA hout/Output Confirms thathe data checkers and generators in the FPGA & PowerPC SDRAM over					
Checker patterns DDR/ODR DNA Confirms that the FPGA can reliably transfer test data to and from an attached memory device DDR/ODR Size Confirms that the ePGA can reliably transfer test data to and from an attached memory device DDR/ODR Size Confirms that the expected amount of memory is connected to the FPGA and available for use Forr Reporter Generates errors to validate the error reporting system Flash Confirms that a defined region of FRAM memory is writable and readable TAG Controller Confirms that a defined region of FRAM memory is writable and readable Marvell Integrity Monitor Hooks all the Marvell integrity interrupts (e.g. bus parity errors) and redirects them into the BIT test report Network Load Connects a client to a specified erver, and sepcified elternet interface. Network Load Starts a server on a specified interface, waits (with timeout) for a client connection and sinks any data received PCI XDMA checker Confirms that the bridge chip receives a moster abort for invalid PCI X interface correctly generate and check their defined test data patterns. POST Results Evaluate the results of POST tests run before the OS booted POWER Displation Determines the level of power dissipated by the test firmware's power block QDR DOM Sweep Sweep the CDR Linguage an reliably send data through a sp		Confirms that the DDR memory attached to the FPGA is being properly refreshed			
DDPL/CODR DMA Confirms that the FPGA can reliably transfer test data to and from an attached memory device DDR/CDR Independence Confirms individual memory devices may be accessed without interfering with each other DDR/CDR Size Confirms that the expected amount of memory is connected to the FPGA and available for use Error Reporter Generates errors to validate the error reporting system Flash Confirms that the flash can be read RAM Confirms that a defined region of FRAM memory is writable and readable JTAG Controller Confirms that the Controller is accessible from the host Marvell Integrity Monitor Hooks all the Marvel Integrity interrupts (e.g. bus parity errors) and redirects them into the BIT test report Network Load Connext a client to a specified server, and sends a specified count of packets of given size Network Load Starts a server on a specified interface, waits (with timeout) for a client connection and sinks any data received PCI bus Master Abort Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of Power dissipated by the test firmware's power black QDR Coft Sweep		Confirms that the data checkers and generators in the FPGA memory interface correctly generate & check their defined test data			
DDE/CODR Independence Confirms individual memory devices may be accessed without interfering with each other DDR/CDR Size Confirms that the expected amount of memory is connected to the FPGA and available for use Error Reporter Generates errors to validate the error reporting system Flash Confirms that the flash can be read FRAM Confirms that a defined region of FRAM memory is writable and readable JTAG Controller Confirms that the controller is accessible from the host Marvell Integrity Monitor Hooks all the Marvell integrity interrupts (e.g. bus parity errors) and redirects them into the BIT test report Network Load Confirms that the bridge chip receives an a specified ethernet interface Network Load Confirms that the bridge chip receives a most or a pacefied ethernet invalid PCI cycles PCI-X DMA laput/Load Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the ersults of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR PCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR CM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Tarity <					
DDR/DDR Size Confirms that the expected amount of memory is connected to the FPGA and available for use Error Reporter Generates errors to validate the error reporting system Flash Confirms that the flash can be read FRAM Confirms that a defined region of FRAM memory is writable and readable JTAG Controller Confirms that a defined region of FRAM memory is writable and readable Marvell Integrity Monitor Hooks all the Marvell integrity interrupts (e.g. bus parity errors) and redirects them into the BIT test report Network Error Monitor Monitors for transmit and receive errors on a specified etherner interface Network Load Connects a client to a specified server, and sends a specified count of packets of given size Network Load Starts a server on a specified interface, waits (with timeout) for a client connection and sinks any data received PCLX DMA checker Confirms that the bridge chip receives a moster abort for invalid PCL cycles PCLX DMA Input/Output Confirms that PGST tests run before the OS booted POST Results Evaluate the results of PCST tests run before the OS booted POWER DDR Digital Clock Manager over its full frequency range Gonfirms that the RPGA can reliably transfer test data becketO interface correctly generate & check their defined test data patterns RocketIO Data Checker Confirms th					
Error Reporter Generates errors to validate the error reporting system Flash Confirms that a defined report reporting system FRAM Confirms that a defined region of FRAM memory is writable and readable JTAG Controller Confirms that a defined region of FRAM memory is writable and readable Marvell Integrity Monitor Hooks all the Marvell integrity interrupts (e.g. bus parity errors) and redirects them into the BIT test report Network Load Connects a client to a specified server, and sends a specified connection and sinks any data received Network Load Confirms that the bridge chip receives a master abort for involid PCI cycles PCI-X DMA checker Confirms that the bridge chip receives a master abort for involid PCI cycles PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the PFOA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS boated Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR Parity Confirms that the PFOA can reliably stransfer test data between the PFOA RecettO link Read Time Clock Confirms that the PFOA can reliably send data through a specified correctly generate & check their defined test data QDR Parity Confirms that the PFOA can reliably send data throu		Confirms individual memory devices may be accessed without interfering with each other			
Flash Confirms that the flash can be read FRAM Confirms that a defined region of FRAM memory is writable and readable JTAG Controller Confirms that the controller is accessible from the host Marvall Integrity Monitor Hooks all the Marvall integrity interrupts (e.g., bus parity errors) and redirects them into the BIT test report Network Load Connects a client to a specified server, and sends a specified count of packets of given size Network Load Connects a client to a specified interface, waits (with timeout) for a client connection and sinks any data received PCL Bus Master Abort Confirms that the bridge chip receives a master abort for invalid PCL cycles PCL-X DMA checker Confirms that the bridge can reliably transfer test data between the FPGA's PCLX interface correctly generate and check their defined test data patterns PCL-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCL-X bus POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power over its full frequency range QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range RocketIO Data transfer Confirms that the FPGA can reliably send data through a specified correctly generate & check their defined test data patterns. RocketIO Data transfer					
FRAM Confirms that a defined region of FRAM memory is writable and readable JTAG Controller Confirms that the controller is accessible from the host Marvell Integrity Monitor Hooks all the Marvel Integrity interrupts (e.g., bus parity errors) and redirects them into the BIT test report Network Load Connects a client to a specified server, and sends a specified count of packets of given size Network Load Server Starts a server on a specified interface, woits (with timeout) for a client connection and sinks any data received PCI-X DMA checker Confirms that the bridge chip receives a master abort for invalid PCI cycles PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS boated POWer Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Confirms that the data checkers and generators in the FPGA RocketIO interface correctly generate & check their defined test data patterns RecketIO Data Checker Confirms that the data checkers and generators in the FPGA RocketIO interface correctly generate & check their defined test data patterns Simple Worker Provides a varriable CPU load, so that the BT is incrementing					
ITAG Controller Confirms that the controller is accessible from the host Marvell Integrity Monitor Hooks all the Marvell integrity interrupts (e.g., bus parity errors) and redirects them into the BIT test report Network From Monitor Monitors for transmit and receive errors on a specified ethernet interface Network Load Connects a client to a specified interface, waits (with timeout) for a client connection and sinks any data received PCI Bus Master Abort Confirms that the bridge chip receives a master abort for invalid PCI cycles PCI-X DMA checker Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR DCM Sweep Confirms that the FPGA can reliably send data through a specified RocketIO link Real Time Clock Confirms that the PGA can reliably send data through a specified RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated System Clock Confirms that the board power supply rails are within 5% of nominal values System Clock Confirms that the PGA can reliably send data through a specified Rocket					
Marvell Integrity Monitor Hooks all the Marvell integrity interrupts (e.g. bus parity errors) and redirects them into the BIT test report Network Error Monitor Monitors for transmit and receive errors on a specified error to packets of given size Network Load Connects a client to a specified errors, and specified error of packets of given size Network Load Starts a server on a specified interface, waits (with timeout) for a client connection and sinks any data received PCI Bus Master Abort Confirms that the bridge chip receives a master abort for involid PCI cycles PCI-X DMA checker Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power black QDR DCM Sweep Sweep the QDR Digital Clack Manager over its full frequency range QDR Doring Confirms that the RTC is incrementing Reacterio Data Checker Confirms that the data checkers and generators in the FPGA RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated System Clack Confirms that the bridge can reliably send data through a specified RocketIO link Simple Worker Provides a variable CPU l					
Network Error Monitor Monitors for transmit and receive errors on a specified ethernet interface Network Load Connects a client to a specified interface, waits (with timeout) for a client connection and sinks any data received PCI Bus Master Abort Confirms that the bridge chip receives a master abort for invalid PCI cycles PCI-X DMA checker Confirms that the bridge can reliably transfer test data between the FPGA's PCI-X interface correctly generate and check their defined test data patterns PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Parity Confirms that parity error detection for the QDR memory is operational Red Time Clock Confirms that the fPGA can reliably send data through a specified RockettO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the PFGA can simultaneously transfer test data reliably to/from all QDR memory devices System Clock Confirms that the temperature sensors correctly detect defined alarm conditions					
Network Load Connects a client to a specified server, and sends a specified count of packets of given size Network Load Server Starts a server on a specified interface, waits (with timeou)) for a client connection and sinks any data received PCI Bus Master Abort Confirms that the bridge chip receives a master abort for invalid PCI cycles PCI-X DMA checker Confirms that the bridge chip receives a master abort for invalid PCI cycles PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA's PCI-X interface correctly generate and check their defined test data patterns PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR Darity Confirms that the ATC is incrementing Real Time Clock Confirms that the RTC is incrementing RockettO Data Checker Confirms that the FPGA can reliably send data through a specified RockettO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the FPGA can reliably send data tricaply to/from all QDR memory devices System Voltage		Hooks all the Marvell integrity interrupts (e.g. bus parity errors) and redirects them into the BIT test report			
Network Load Server Starts a server on a specified interface, waits (with timeout) for a client connection and sinks any data received PCI Bus Master Abort Confirms that the bridge chip receives a master abort for invalid PCI cycles PCI-X DMA checker Confirms that the bridge chip receives a master abort for invalid PCI cycles PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA's PCI-X interface correctly generate and check their defined test data patterns PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA's POL-X interface correctly generate and check their defined test data patterns POWED Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Parity Confirms that the data checkers and generators in the FPGA RocketIO interface correctly generate & check their defined test data tare RocketIO Data Checker Confirms that the FPGA can reliably send data through a specified RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated System Clock Confirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devices System Voltage Confirms that the EPGA can simultaneously transfer test data reliably to/from all QDR memory device		Monitors for transmit and receive errors on a specified ethernet interface			
PCI Bus Master Abort Confirms that the bridge chip receives a master abort for invalid PCI cycles PCI-X DMA checker Confirms that the data checkers and generators in the FPGA's PCI-X interface correctly generate and check their defined test data patterns PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR portry Confirms that the RTC is incrementing Read Time Clock Confirms that the PFGA can reliably send data through a specified RockettO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated System Clock Confirms that the EPGA can reliably transfer test data reliably to/from all QDR memory devices System Clock Confirms that the boards power supply rails are within 5% of nominal values Temperature alarm Confirms that the temperature sensors correctly detect defined alarm conditions Temperature alarm Confirms that the temperature sensors correctly detect defined alarm conditions Temperature alarm Confirms that the temperature senso	Network Load	Connects a client to a specified server, and sends a specified count of packets of given size			
PCL-X DMA checker Confirms that the data checkers and generators in the FPGA's PCI-X interface correctly generate and check their defined test data patterns PCL-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Parity Confirms that parity error detection for the QDR memory is operational Real Time Clock Confirms that the RTC is incrementing RockettO Data Checker Confirms that the FPGA can reliably send data through a specified RockettO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated System Clock Confirms that all system clocks are running at the correct frequency System Clock Confirms that the temperature sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out bo	Network Load Server				
PCL-X DMA Checker patterns POST Results Evaluate the results of POST tests run before the OS booted POWER Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR DCM Sweep Confirms that parity error detection for the QDR memory is operational Real Time Clock Confirms that the RTC is incrementing RockettO Data Checker Confirms that the FPGA can reliably send data through a specified RockettO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the terperature sensors correct frequency System Voltage Confirms that the temperature sensors correct frequency System Voltage Confirms that the temperature sensors correct y detect defined alarm conditions Temperature darm Confirms that the temperature sensors correct y detect defined alarm conditions Temperature Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the temperatures	PCI Bus Master Abort	Confirms that the bridge chip receives a master abort for invalid PCI cycles			
PCI-X DMA Input/Output Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Parity Confirms that parity error detection for the QDR memory is operational Real Time Clock Confirms that the KTC is incrementing RockettO Data Checker Confirms that the EPGA can reliably send data through a specified RockettO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the PFGA can simultaneously transfer test data reliably to/from all QDR memory devices System Clock Confirms that the temperature sensors correctly detect defined alarm conditions Temperature darm Confirms that the temperatures Voltage Confirms that the temperatures sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the temperatures Xilinx Integrity Monitor Herioda can be deconfigured and serviced <td< td=""><td>PCLX DAAA shaskar</td><td>Confirms that the data checkers and generators in the FPGA's PCI-X interface correctly generate and check their defined test data</td></td<>	PCLX DAAA shaskar	Confirms that the data checkers and generators in the FPGA's PCI-X interface correctly generate and check their defined test data			
POST Results Evaluate the results of POST tests run before the OS booted Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Parity Confirms that parity error detection for the QDR Memory is operational Reel Time Clock Confirms that the RTC is incrementing RocketIO Data Checker Confirms that the data checkers and generators in the FPGA RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that all system clocks are running at the correct frequency System Voltage Confirms that all system clocks are running at the correct frequency System Voltage Confirms that the temperature sensors correctly detect defined alarm conditions Temperature Alarm Confirms that the vatchdog can be enabled and serviced Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the FPGA can be deeonfigured and serviced Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity error) and redirects them into the BIT test report Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and	PCI-X D/VIA checker	patterns			
Power Dissipation Determines the level of power dissipated by the test firmware's power block QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Parity Confirms that parity error detection for the QDR memory is operational Real Time Clock Confirms that the RTC is incrementing RockettO Data Checker Confirms that the data checkers and generators in the FPGA RockettO interface correctly generate & check their defined test data patterns RockettO Data transfer Confirms that the FPGA can reliably send data through a specified RockettO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devices System Clock Confirms that all system clocks are running at the correct frequency System Voltage Confirms that the temperature sensors correctly detect defined alarm conditions Temperature alarm Confirms that the workhdog can be enabled and serviced Voltage Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board temperatures Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report	PCI-X DMA Input/Output	Confirms that the bridge can reliably transfer test data between the FPGA & PowerPC SDRAM over the PCI-X bus			
QDR DCM Sweep Sweep the QDR Digital Clock Manager over its full frequency range QDR Parity Confirms that parity error detection for the QDR memory is operational Real Time Clock Confirms that the RTC is incrementing RocketIO Data Checker Confirms that the data checkers and generators in the FPGA RocketIO interface correctly generate & check their defined test data patterns RocketIO Data transfer Confirms that the FPGA can reliably send data through a specified RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devices System Clock Confirms that all system clocks are running at the correct frequency System Voltage Confirms that the temperature sensors correctly detect defined alarm conditions Temperature alarm Confirms that the temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Integrity Monitor Hooks all the Xilinx integrity errors) and redirects them into					
QDR Parity Confirms that parity error detection for the QDR memory is operational Real Time Clock Confirms that the RTC is incrementing RocketIO Data Checker Confirms that the data checkers and generators in the FPGA RocketIO interface correctly generate & check their defined test data patterns RocketIO Data transfer Confirms that the PGA can reliably send data through a specified RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that all system clocks are running at the correct frequency System Clock Confirms that the temperature sensors correctly detect defined alarm conditions Temperature alarm Confirms that the temperatures sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts to the bridge chip Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus <td></td> <td></td>					
Real Time Clock Confirms that the RTC is incrementing RocketIO Data Checker Confirms that the data checkers and generators in the FPGA RocketIO interface correctly generate & check their defined test data patterns RocketIO Data transfer Confirms that the FPGA can reliably send data through a specified RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devices System Clock Confirms that all system clocks are running at the correct frequency System Voltage Confirms that the temperature sensors correctly detect defined alarm conditions Temperature alarm Confirms that the watchdog can be enabled and serviced Valiage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Integrity Monitor Hooks all the FPGA is able to generate interrupts to the bridge chip Xilinx Integrity Monitor Hooks all the FPGA is able to generate interrupts to the bridge chip	QDR DCM Sweep				
RocketO Data Checker Confirms that the data checkers and generators in the FPGA RocketIO interface correctly generate & check their defined test data patterns RocketIO Data transfer Confirms that the FPGA can reliably send data through a specified RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devices System Clock Confirms that all system clocks are running at the correct frequency System Voltage Confirms that the temperature sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Integrity Confirms that the FPGA generates the correct 'bus ready' signal on the register bus	QDR Parity	Confirms that parity error detection for the QDR memory is operational			
RocketionpatternsRocketionConfirms that the FPGA can reliably send data through a specified Rocketion linkSimple WorkerProvides a variable CPU load, so that the BIT control system can be validatedSynchronous QDRConfirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devicesSystem ClockConfirms that all system clocks are running at the correct frequencySystem VoltageConfirms that the boards power supply rails are within 5% of nominal valuesTemperature alarmConfirms that the temperature sensors correctly detect defined alarm conditionsTemperature MonitorPeriodically prints out board temperaturesVoltage MonitorPeriodically prints out board voltagesWatchdog AlarmConfirms that the FPGA can be deconfigured and that the test firmware can then be configured into the deviceXilinx Integrity MonitorHooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test reportXilinx RegisterConfirms that the FPGA generates the correct 'bus ready' signal on the register bus	Real Time Clock				
Patterns patterns RocketIO Data transfer Confirms that the FPGA can reliably send data through a specified RocketIO link Simple Worker Provides a variable CPU load, so that the BIT control system can be validated Synchronous QDR Confirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devices System Clock Confirms that all system clocks are running at the correct frequency System Voltage Confirms that the boards power supply rails are within 5% of nominal values Temperature alarm Confirms that the temperature sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA generates the correct 'bus ready' signal on the register bus	Realized Data Checker	Confirms that the data checkers and generators in the FPGA RockettO interface correctly generate & check their defined test data			
Simple WorkerProvides a variable CPU load, so that the BIT control system can be validatedSynchronous QDRConfirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devicesSystem ClockConfirms that all system clocks are running at the correct frequencySystem VoltageConfirms that the boards power supply rails are within 5% of nominal valuesTemperature alarmConfirms that the temperature sensors correctly detect defined alarm conditionsTemperature MonitorPeriodically prints out board temperaturesVoltage MonitorPeriodically prints out board voltagesWatchdog AlarmConfirms that the YPGA can be deconfigured and that the test firmware can then be configured into the deviceXilinx Integrity MonitorHooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test reportXilinx RegisterConfirms that the FPGA generates the correct 'bus ready' signal on the register bus	Rockello Dala Checkel				
Synchronous QDR Confirms that the FPGA can simultaneously transfer test data reliably to/from all QDR memory devices System Clock Confirms that all system clocks are running at the correct frequency System Voltage Confirms that all system clocks are running at the correct frequency System Voltage Confirms that the boards power supply rails are within 5% of nominal values Temperature alarm Confirms that the temperature sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the watchdog can be enabled and serviced Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA generates the correct 'bus ready' signal on the register bus					
System Clock Confirms that all system clocks are running at the correct frequency System Voltage Confirms that the boards power supply rails are within 5% of nominal values Temperature alarm Confirms that the temperature sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the vatchdog can be enabled and serviced Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA generates the correct 'bus ready' signal on the register bus					
System Voltage Confirms that the boards power supply rails are within 5% of nominal values Temperature alarm Confirms that the temperature sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the watchdog can be enabled and serviced Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA generates the correct 'bus ready' signal on the register bus	Synchronous QDR				
Temperature alarm Confirms that the temperature sensors correctly detect defined alarm conditions Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the watchdog can be enabled and serviced Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA generates the correct 'bus ready' signal on the register bus					
Temperature Monitor Periodically prints out board temperatures Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the watchdog can be enabled and serviced Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA is able to generate interrupts to the bridge chip Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus	System Voltage	Confirms that the boards power supply rails are within 5% of nominal values			
Voltage Monitor Periodically prints out board voltages Watchdog Alarm Confirms that the watchdog can be enabled and serviced Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Integrity Confirms that the FPGA is able to generate interrupts to the bridge chip Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus	Temperature alarm	Confirms that the temperature sensors correctly detect defined alarm conditions			
Watchdog Alarm Confirms that the watchdog can be enabled and serviced Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA is able to generate interrupts to the bridge chip Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus	Temperature Monitor	Periodically prints out board temperatures			
Watchdog Alarm Confirms that the watchdog can be enabled and serviced Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA is able to generate interrupts to the bridge chip Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus	Voltage Monitor	Periodically prints out board voltages			
Xilinx Configuration Confirms that the FPGA can be deconfigured and that the test firmware can then be configured into the device Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA is able to generate interrupts to the bridge chip Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus		Confirms that the watchdog can be enabled and serviced			
Xilinx Integrity Monitor Hooks all the Xilinx integrity interrupts (e.g. QDR parity errors) and redirects them into the BIT test report Xilinx Interrupt Confirms that the FPGA is able to generate interrupts to the bridge chip Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus					
Xilinx Interrupt Confirms that the FPGA is able to generate interrupts to the bridge chip Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus	Xilinx Integrity Monitor				
Xilinx Register Confirms that the FPGA generates the correct 'bus ready' signal on the register bus					

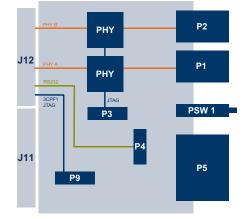
Figure 7: 3CPF1 Transition Module

Firmware Development Support

In a number of instances, the services provided by the BSP are dependent on the functionality of the firmware configured into the FPGA. In order to ensure compatibility between user defined firmware and the BSP, Curtiss-Wright supplies a number of standardized firmware interface components and recommends that a set of "standard" registers are implemented in the FPGA by users. A "features" register defines which elements are actually implemented. The firmware library components include:

Functional interface components

- DDR SDRAM interfaces
- Device bus interface
- ICS8442 programming interface
- PCI-X interface
- QDR SRAM interface


Simulation model components

- DDR SDRAM simulation model
- MV64360 bridge simulation model
- QDR SRAM simulation model

Other library files

- Component definitions for all library components
- Constants and types definitions
- ModelSim Macro file for library compilation
- ModelSim project file
- Text file revision history of the library files section
- Utilities used by the MV64360 simulation

3CPF1 Adapter Module

The 3CPF1 uses high-speed connectors in the J2 and J3 positions rather than the standard CompactPCI connectors. Curtiss-Wright supplies the 3CPF1 Adapter Card which converts the 3CPF1 connectors to standard 32bit 3U CompactPCI pinout and also allows stand-alone operation of the 3CPF1. This adapter enables developers to evaluate the 3CPF1 in a standard cPCI chassis. It is available in two variants - one for system slot usage and one for peripheral slot usage.

Routing

Standard 32-bit PCI maps straight through to J11, whereas RocketIO signals are broken out through high speed Samtec connectors at P5 and J5. These connectors are on opposite sides of the board, with P5 on the top side and J5 in the bottom. The routing is set so that boards in adjacent slots can link directly: i.e. the transmitter pin of a RocketIO in P5 maps to the receiver pin of the same RocketIO on J5 of the adjacent board.

The 40 User I/O differential pairs are routed so as to prevent contention at power up. Each differential pair on P6/7 is mapped to a neighboring pair on J6/7. For example user I/O pairs 18 and 16 are adjacent on P6. When connected to the adjacent board J6, the first board's pair 18 maps to the second board's pair 16, while the first board's pair 16 maps to the second board's pair 18. The same signals are also routed onto the cPCI backplane User I/O pins.

Ethernet signals are routed through for backplane signaling or for breakout using the transition module.

3CPF1 Transition Module

The 3CPF1 Transition Module can only be used in conjunction with a 3CPF1 Adaptor Card. The Transition Module allows access to the backplane Ethernet connections from the 3CPF1 (either SERDES or raw 100Mbit) and to the RS232 serial link and JTAG port.

Routing

The Ethernet signals are routed to PHYs and on to the rear RJ45 connectors P1 and P2. The PHYs are controlled remotely from the 3CPF1 card. There is a JTAG port for the PHY devices.

Figure 9: Air and conduction cooled 3CPF1 boards

RS232 signals are routed to P4 and on to the 9 way D-type connector P5. 3CPF1 JTAG can be accessed from P9.

3PF1 Debug Module

The 3CPF1 connects all debug signals to a single connector near the front panel. A debug breakout module is available for developers to access these signals. There is a COP port connector on the debug module for the PowerPC processor. Xilinx FPGA JTAG ports are provided to allow JTAG configuration and chipscope debugging of the FPGA.

Table 2: Specifications

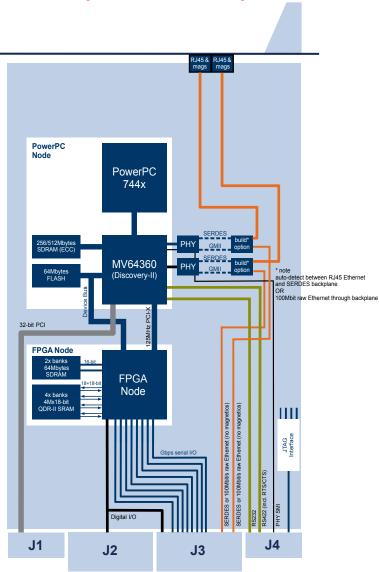
PowerPC Node				
Number	1			
Processor	PowerPC 7447 1000MHz PowerPC 7447A 1000MHz* PowerPC 7448 1250MHz*			
Bridge	Marvell MV64360			
SDRAM	256 or 512 (future) Mbytes DDR SDRAM with ECC			
FLASH	64 Mbytes			
Ethernet	100Base-T 1000Base-T			
Serial I/O	1x RS232 (EIA-232) 1x RS422 (EIA-422)			
FPGA Node				
Number	1			
FPGA	Xilinx Virtex-II Pro XC2VP70			
Serial I/O	RocketlO up to 3.125 Gbps			
QDR SRAM	4 banks of 2 or 4 Mbytes 18-bit datapaths			
SDRAM	128 Mbytes (2 banks of 64 Mbytes) with ECC 16-bit data paths			

Debug					
JTAG	Multiple JTAG/COP chains - Front panel adapter or backplane				
Backplane Adapters					
3CPF1 Adapter, System Slot	3CPF1 to standard 3U connector conversion for system board				
3CPF1 Adapter, Peripheral Slot	3CPF1 to standard 3U connector conversion for peripheral board				
3CPF1 Transition	Backplane signal break-out				
Software Support					
Operating Systems (PowerPC)	VxWorks, Linux				
Diagnostics	POST, BIT				
Libraries	User, Kernel				
Firmware	Interface & Simulation components				

* Please consult Curtiss-Wright for 7447A and 7448 device availability

Ruggedized versions

Curtiss-Wright offers ruggedized versions of the 3CPF1 that are characterized for extended temperature range, shock, vibration, altitude and humidity. These boards are equipped with extra and/or special hardware to improve tolerance against shock and vibration.


Table 3:		Air Cooled		Conduction
Environmental Specifications		Level 1	Level 2	Level 4
Part number extension				
Temperature	Operational ¹ (at sea level)	0°C to 50°C Inlet 8 cfm air flow at sea level	-10°C to 65°C Inlet 8 cfm air flow at sea level	-40°C to 75°C Card edge temperature
	Non-operational	-40°C to 85°C	-40°C to 85°C	-55°C to 85°C
Vibration	Operational (Sinus)	-	-	10G peak 15-2000Hz
	Operational (Random)	-	0.02 g ² /Hz (20-2000Hz)	0.04 g ² /Hz (15-2000Hz)
Shock	Operational	-	30 g peak 11ms half sine	40 g peak 11ms half sine
Humidity	Operational non-condensing	0-95% non-condensing	0-95% non-condensing	0-100% non-condensing
Altitude	Operational	10,000 ft	20,000 ft	70,000 ft
Conformal Coat		No	Yes	Yes

Notes

1. The maximum operating temperature is heavily dependant on the power dissipation of the FPGA devices: Applications with high levels of FPGA utilization may not operate to the maximum ambient temperatures stated. The maximum temperature figures given here are for a 3CPF1 where the FPGA is operating with a power dissipation of 20W.

Figure 10: 3CPF1 Block Diagram

Warranty

This product has a one year warranty.

Contact Information

To find your appropriate sales representative, please visit: Website: <u>www.cwcembedded.com/sales</u>

Email: sales@cwcembedded.com

For technical support, please visit:

Website: www.cwcembedded.com/support1

Email: support1@cwcembedded.com

The information in this document is subject to change without notice and should not be construed as a commitment by Curtiss-Wright Controls Inc., Embedded Computing (CWCEC) group. While reasonable precautions have been taken, CWCEC assumes no responsibility for any errors that may appear in this document. All products shown or mentioned are trademarks or registered trademarks of their respective owners.